RA (MAKRISHNA MISSION VIDYAMANDI Residential Autonomous College under University of Calcutta	RA)
	FIRST YEAR B.A./B.SC. SECOND SEMESTER (January – June) 2013 Mid-Semester Examination, March 2013	
Date : 04/03/2013	PHYSICS (Honours)	
Time : 11 am – 1 pm	Paper : II	Full Marks : 50

Answer five questions from Gr-A , Gr-B and Gr-C. Use three separate scripts, one for each group.

Group – A [Mechanics-I]

Answer any two questions :

1. a) Obtain a relation the linear momentum of a moving particle as viewed from two inertial frames S and S' in uniform relative motion. 3

b) A particle moves on a circle of constant radius b. If the speed of the particle varies with time t according to the equation $v = Ar^2$, for what value or values of t does the acceleration vector make an angle of 45° with the velocity vector ?

c) The bob of a pendulum moves on a vertical circle of radius b, and when the string is at an angle θ to the vertical, the speed of the bob is given by $v^2 = 2gbCos\theta$, where g is a positive constant. Find the acceleration of the bob at an angle θ .

2.a) Establish the work energy theorem for a particle moving in a force field \vec{F} . Hence show that if \vec{F} is conservative, the total mechanical energy is a constant of motion.

b) Use the work energy theorem to obtain an expression for the time period of a simple pendulum. [Do not solve the equation of motion].

c) Show that the force $\vec{F} = -kr^3 \vec{r}$ is conservative, and find the corresponding scalar potential.

3. A particle of mass m is projected vertically upwards with an velocity v in a medium that offers a resistance proportional to the speed. Find the following :

a) speed v as a function of time t during ascent;

b) time to reach maximum height:

- c) the maximum height reached;
- d) the work done by the resistive force.

10

3

Group – B [Gen. Properties of matter.]

Answer any one question :

4. a) Derive a relation among Young's modulus, rigidity modulus and bulk modulus of a solid homogeneous body. 5

b) A solid cylinder of length L and radius R is fixed at its upper end and a twist is applied at the free end. Derive an expression for moment of twisting couple acting on it. 5

5. a) What do you understand by 'bending of beam'. Derive an expression for it. 2+3

b) A cantilever is clamped at one end and loaded at any point (P). Show that the depression at free end (Q) is same as the depression at P with load at Q. 5

Group – **C** [Waves and vibrations.]

Answer any two questions :

6 a) Find an expression for instantaneous potential energy per unit volume of the acoust wave.	tic 5
b) i) Define specific acoustic impedance. Derive an expression of it iii) Find the acoustic impedance of air at STP, where velocity of sound is	1+2
$3.32 \times 10^4 \text{ cm/s}$, excess pressure = $1.01 \times 10^6 \text{ dyne/cm}^2$, $\rho_o = 1.2910^{-3} \text{gm/cm}^3$	2
7. a) Find an expression for velocity of sound in gas medium.	6
b) Find the sound energy density in air of free plane progressive acoustic wave having intensity of 80 dB and frequency 1 KHz. Given the velocity of sound in air is 340 m/s and	an d
reference intensity $10^{-12} Wm^{-2}$.	4
8. a) Explain temporal coherence in connection with interference.b) Starting from the equation of motion of a particle subjected to a periodic force and a damping force, proportional to velocity, discuss, i) underdamped ii) overdamped and	4
iii) critically damped conditions.	6